MODELLING VOLUME V/A MINU BASED CHOICE

 MOD=1SMRS ADA Network 2023
April 25, London

Chris Moore
Ipsos

PRESENTATION

1
Measuring Choice behaviour

Modelling Volume via Menu Based Choice (MBC)

MBC Case Study

MEASURING CHOICE BEHAVIOUR

Making choices can be complex!
What do consumers consider when deciding on what product to purchase?

One way of answering these questions is to determine the relative importance of the (product) features using a technique called

CONJOINT ANALYSIS

CONJOINT FORCES PEOPLE TO MAKE CHOICES BY TRADING OFF DIFFERENT ELEMENTS OF THE PRODUCT OR SERVICE PROPOSITION SO WE LEARN WHAT THEY TRULY VALUE

MEASURING CHOICE BEHAVIOUR

Typical to ask
respondents to make a single selection which represents their most preferred option out of the choices presented to them

VOLUMETRIC CONJOINT

Often the case that people can make MULTIPLE PURCHASE DECISIONS

SINGLE CHOICE

Where respondents are only making a single choice between options the underlying interpretation is easy
40% consumers will purchase Option A
10% consumers will purchase Option B
30% consumers will purchase Option C
20% consumers will purchase Option D

Easy to build financial metrics such as revenue and profit

MULTI CHOICE

Standard methods are likely to be mis-leading as shares will sum to 100% - it doesn't consider VOLUME!!

At the aggregate level:
Preference share for Option C is twice that of Options A and B

Options A, B and D are equally preferred
At the respondent level:

Options A and B are chosen by as many respondents as Option C, and by twice as

Choices:				
	Option A	Option B	Option C	Option D
Respondent 1	0	0	1	0
Respondent 2	0	0	0	1
Respondent 3	1	1	0	0
Respondent 4	1	1	0	0
Respondent 5	0	0	1	0
Shares:				
	Option A	Option B	Option C	Option D
Respondent 1	0\%	0\%	100\%	0\%
Respondent 2	0\%	0\%	0\%	100\%
Respondent 3	50\%	50\%	0\%	0\%
Respondent 4	50\%	50\%	0\%	0\%
Respondent 5	0\%	0\%	100\%	0\%
Preference	20\%	20\%	40\%	20\%
Consumers	40\%	40\%	40\%	20\%

SOME METHODS FOR VOLUMETRIC ANALYSIS

Maximum Expected Value

Identify the maximum volume across any single task (by respondent). Transform all other tasks to have the same volume by using the None option to capture residual volume

2-step approach by modelling choice model data in the standard way. In the second step, use (log) utility estimates as predictors to create a general linear model

Economic Models

Uses demand theory to model volume. The model incorporates a common parameter for satiation of the good, and a parameter for the maximum budget spend

WHAT IS MENU BASED CHOICE

Menu Based Choice allows us to simultaneously measure multiple correlated decisions in situations where the consumer can select multiple options

MANY SITUATIONS IN WHICH CONSUMERS PICK MULTIPLE OPTIONS

Food / Drink

Restaurant / Coffee shop

Tech

Buying add-on services in addition to a core product

Telecoms

Phone / Tariff / Additional bundles

Travel

Hotel / Flights / Car

FMCG

Purchasing of consumer goods

Media

TV / Broadband / Phone

MBC EXAMPLE SCREENS

Classic menu approach

Base model + Multi Select

BENEFITS OF MENU BASED CHOICE

Realistic environment where consumer chooses their own configuration

More accurate financial metrics

Identify item(s) that cannibalize each other

Understand which items consumers are picking together

MBC ANALYTICAL APPROACHES

1. Serial cross-effects

Separate choice models are created for each item

Dependent variable is the choice of an item

Probability of choice for each item is some function of the desirability of the item, the price of the item and (potentially) the price of other items on the menu

SERIAL CROSS EFFECTS

No cross-effect

```
Choice \((\) Prod \(A)=f\left(\right.\) Const + Price \(\left._{A}\right)\)
```


Cross-effects

Choice $($ Prod $A)=f\left(\right.$ Const + Price $_{A}+$ Price $_{B}+$ Price $\left._{C}\right)$

Adding in additional terms not related to product A

MBC ANALYTICAL APPROACHES

2. Exhaustive Alternatives

Treat each menu as a single choice from 2^{n} alternatives where n is the number of items

Pros: Single Model

Cons: Number of combinations becomes prohibitive the more items there are

Possible to do combination of cross-effects and exhaustive models in the same study

MBC ANALYTICAL APPROACHES

3. Sampling of alternatives

Each item and its price coded as separate attributes

Considers only a random sample of all possible combinations (plus chosen combination)

Optionally... dummy tasks can be included to check if item chosen at a specific price

CASEID	Task\#	Conce		Core	Feature 1		Price		Feature 2	Price				Response
1	1	1		1	1		2		1	3				0
1	1	2		1		2	0		1	3				1
1	1	3		1		2	0		2	0				0
...	\ldots			\ldots		\ldots
1	1	33		2		2	0		1	3				0
CASEID	Concept\#	Core	Featur		Price 1	Feat	ure 2	Price2	2 Featur		Price			Response
1	1	1	1		1		2	0	2		0			1
1	2	1	2		0		2	0	2		0		..	0
1	1	1	2		0		1	3	2		0		..	0
1	2	1	2		0		2	0	2		0			1
1	1	1	2		0		2	0	1		1		..	0
v	2	1	2		0		2	0	2		0		...	1

Each feature is either included in the combination (1) or not (2) Option prices are alternative specific

MBC ANALYTICAL APPROACHES

4. Probit models

Error terms are distributed differently and importantly can be correlated

Reveals substitution and complementary relationships by estimating covariance matrix of the error term

Despite theoretical advantage, it generally performs no better than logit models and takes significantly longer to estimate

Multinomial Logit	Multivariate Probit
Utility Function	$U=X \beta^{T}+\epsilon$

mBC MEASURES VOLUME MORE ACCURATELY

Respondents can select from none to many subscription services
Availability effects to model presence / absence of service
Serial cross-effect model for each subscription service
Calculate how many items respondent's buy

MBC Case Studyni.

Commissioned research to optimise the pricing of key dishes on their menu in order to maximise profit

In addition to individual dishes, Set menu deals which bundle together multiple courses also offered

Analysis needed to further take in to account cannibalisation to and from key competitors

STUDY DETAILS

Sample

Young Adult /

 Family life stage
Choice Design

QUESTIONNAIRE FLOW

1. Screening

U\&A demographic and screening questions

Most recent occasion

Satisfaction ratings

2. Stage 1 - $\mathbf{C B C}$

Determine cannibalisation to/from TGI Fridays

Choose most preferred competitor menu (Fixed price - Single choice)

Choice Based Conjoint exercise with TGI Fridays menu vs. winning competitor menu

Only TGI Friday's prices changing

3. Stage 2 - MBC

Determine choice/price sensitivity within the TGI Fridays menu

MBC exercise with the price of all dishes varying each time

Option to choose none of the dishes and leave the restaurant

example screenshots

Stage 1 - CBC

0

Stage 2 - MBC

Starter 1	¢3.99	Desserts 1	E3.99
Starter 2	E4.99 \square	Desserts 2	¢3.99 \square
Starter 3 To share...	E3.99 \square	Desserts 3	E3.99 \square
To share...	E6.99 \square	${ }_{\text {To Share... }}$	¢5.99 \square
Starter 5	£13.99 \square	Desserts 5	¢5.99 \square
main courses		DRINKS	
Mains 1	E8.29 \square	Drinks 1	${ }_{61.99}^{\square}$
Mains 2	¢10.49 \square	Drinks 2	${ }^{61.79}$ -
Mains 3	E13.29 \square	Drinks 3	E3.99 \square
Mains 4	¢10.99	Drinks 4	E3.00 \square
Mains 5	${ }^{\text {E16.99 }} \square$	Drinks 5	E5.49 \square
Mains 6	${ }^{\text {E11.99 }} \square$		
Mains 7	¢12.69 \square		
Mains 8	¢13.99 \square		
Mains 9	E10.49 \square		
Mains 10	¢9.49 \square		
TAKE 2			
Value meal 1	${ }^{68.99} \square$		
Value meal 2	¢11.99 \square		

\square Given the choices above, I would leave this restaurant without eating

MODELLING CONSIDERATIONS

Imposed limitations

1
Respondents can select a maximum of one dish per menu area

Cannot select the same dish multiple times

If a Take 2 meal is selected then the respondent cannot select any other dish (and vice versa)

4
If the last occasion was a Friday - Sunday then the Take 2 option was not available (mimicked real life situation)

[^0]Note: Survey data on last occasion suggested c.96\% chose a main course

ANALYSIS STAGE 1 (CBC)

ANALYSIS STAGE 2 (MBC)

Total Sample $\mathrm{N}=1490$ -										MBC model to gauge change in preference for the different menu
			\% of			\% of			\% of	
Filter	Starters Starter 1	Price	choice 3.3%	Mains Main 1	$\begin{aligned} & \text { Price } \\ & \text { £7.99 } \end{aligned}$	choice 18.4\%	Desserts Dessert 1	Price	$\begin{gathered} \text { choice } \\ 9.7 \% \end{gathered}$	
Menu Prices	Starter 2	£3.99	11.3\%	Main 2	£10.29	10.1\%	Dessert 2	£5.99	5.3\%	
	Starter 3	£5.59	11.0\%	Main 3	£12.99	10.8\%				
Importance Summary	Starter 4	£3.99	6.4\%	Main 4	£8.99	3.9\%	Drinks			Data weighted by how often they go to TGI Fridays
Importance Chart	Starter 5	£13.29	5.0\%	Main 5	£14.99	3.8\%	Drink 1	£4.49	9.0\%	
	Value meals			Main 6 Main 7	£12.99	6.6\% 6.3%				
Set Band A/B Prices	Value meal 1	$£ 9.99$ £12.99	13.1\%	Main 8	£12.69	4.5\%				
Filter Summary	Value meal 2	£12.99	1.0\%	Main 9 Main 10	$\begin{aligned} & £ 9.49 \\ & £ 8.99 \end{aligned}$	$\begin{aligned} & 6.5 \% \\ & 7.1 \% \end{aligned}$				
Competitor Elasticity	TGIF covers				Net profit					
Menu Analysis	Current			205,000	Current		1,240,000			
Help Guide	Scenario X	184,000			Scenario X		887,000			
Export Chart	\% share				Gross profit (£ per 1000 Total)					
	Current			32.0\%	Curren		-	-	840,000	
	Scenario X		13.3\%		Scenari	X		1,587	,000	

CHECKING RESULTS

Sensitivity of each item as other items change price

		Effect on dish																			
		S1	S2	S3	S4	S5	VM1	VM2	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	D1	D2	DR1
	S1		0.7	0.1	1.1	0.0	-.0.5	-0.3	-0.6	0.0	-0.1	0.0	-0.1	0.1	0.0	-0.1	-0.2	0.0	0.1	-0.4	-0.1
	S2	0.4		1.0	2.8	0.1	-0.9	-0.5	-0.8	-0.4	0.1	-0.3	0.1	0.1	0.0	0.1	0.1	0.0	-0.4	0.2	0.8
	S3	0.1	1.2		0.9	0.0	0.5	0.7	-0.6	-0.1	-0.2	-0.1	0.1	0.1	0.0	-0.2	-0.3	-0.2	0.0	0.1	-0.2
	S4	0.7	0.7	0.8		0.2	-0.4	0.3	-0.7	-0.4	0.1	-0.4	-0.1	-0.1	-0.2	-0.1	-0.2	-0.2	-0.2	-0.2	-0.1
	S5	0.0	0.1	0.0	0.2		0.0	-0.3	-0.2	0.0	0.1	0.0	-0.2	0.0	-0.1	0.2	0.0	-0.3	-0.5	0.7	1.1
-	VM1	0.3	0.5	0.2	0.4	0.5		2.9	1.3	0.1	0.1	0.5	0.3	0.1	0.0	0.3	0.5	0.4	0.8	0.6	0.5
-	VM2	0.0	0.3	0.1	0.1	-0.1	4.1		-0.1	0.0	0.0	0.2	-0.1	-0.1	0.0	-0.1	0.0	0.1	-0.5	-0.1	-0.6
$\stackrel{\square}{\square}$	M1	-0.2	-0.8	-0.1	-0.5	0.0	1.9	0.3		1.8	0.2	1.4	0.1	0.1	0.1	0.3	0.8	0.9	-0.9	-0.9	0.2
을	M2	-0.1	-0.1	-0.1	0.1	0.0	0.2	0.2	2.2		0.1	0.9	0.1	0.2	0.1	0.5	0.5	0.8	-0.8	-0.5	0.5
은	M3	-0.1	-0.3	0.0	0.4	0.0	0.0	-0.2	0.1	0.0		0.1	0.1	0.0	0.0	0.1	0.0	0.0	1.0	0.3	0.3
$\frac{5}{\text { ¢ }}$	M4	0.1	-0.3	-0.2	0.1	0.0	0.2	0.3	0.9	0.5	0.3		0.2	0.1	0.1	0.2	0.3	0.4	0.1	0.0	-0.4
¢	M5	0.2	0.4	0.1	-0.1	0.1	0.1	-0.2	0.0	0.0	0.1	0.2		0.0	0.0	0.1	0.0	0.0	0.7	-0.1	0.1
-	M6	0.2	0.1	0.0	0.4	0.0	-0.4	-0.1	0.1	0.1	0.0	0.3	0.1		0.2	0.2	0.2	0.0	-0.4	-0.3	0.0
.	M7	-0.1	-0.6	0.0	-0.6	0.2	-0.9	-0.5	0.1	0.2	0.0	0.2	0.0	0.2		0.4	0.2	0.0	0.4	-0.1	-0.8
¢	M8	0.0	0.4	0.1	0.1	0.0	-0.2	0.1	0.2	0.4	0.0	0.2	0.1	0.1	0.3		0.2	0.2	0.0	0.0	0.8
	M9	0.1	-0.4	-0.1	-0.9	0.0	1.6	0.0	0.8	0.4	0.0	0.5	0.1	0.1	0.2	0.4		0.7	-1.4	-0.9	-0.3
	M10	0.3	0.3	0.1	1.1	0.4	0.2	-0.5	0.7	0.5	0.0	0.4	0.0	0.1	0.0	0.1	0.5		0.9	0.9	1.2
	D1	-0.1	-0.3	0.0	-0.4	0.0	0.6	0.4	1.0	-0.5	-0.2	-0.4	-0.1	-0.1	0.0	0.0	-0.4	-0.3		3.0	0.0
	D2	0.1	0.4	0.2	0.7	-0.2	-1.6	0.0	-0.2	0.0	0.2	0.1	0.1	0.1	0.0	0.0	0.0	-0.2	3.7		0.0
	DR1	-0.1	0.3	0.0	0.4	0.0	0.7	0.1	0.1	0.0	0.1	0.1	0.0	0.0	0.1	0.1	0.1	0.0	0.6	-0.1	

Within category all cross-effects should be positive

Cross-effects outside category
should be a mixture of positive and negative effects

Correlated items have greater sensitivity (M1 and M2 are both burger options)

PROFIT OPTIMISATION

Ultimate goal of the project was to increase net profit so analysis needed to show best combination of prices

Stage 1

- Determine \# monthly covers

Stage 2

Determine volume of each dish

Client data
Provided all fixed and variable costs

Optimisation analysis done via
Oracle Crystal Ball software

Realworld results

IN 3 MONTHS, TGI FRIDAY NET PROFIT INCREASED.BY

VS. PREVIOUS YEAR WHERE NEW MENU IMPLEMENTED, AND SIGNIFICANTLY HIGHER THAN IN THE CONTROL RESTAURANTS (12\%)

SUMMARY

Simpler models i.e. less cross-effects tend to work bettethonly include significant effects

Establish all the choice rules up front e.g. Choice patterns, availability, context Be PRAGMATIC !

MBC IS Mery flexible but don't |||||||||WBo is very data expect it to solve Ilinili whingry in order to every possible problem e.g. complex pricing, dynamic bundling
model cross-effects $\mathrm{N}=1000$ is a good starting point

If optimising for revenue/profit do not rely on the None option

REFERENCES

. Ben-Akiva, M \& Gershenfeld, S (1998), "Multi-featured Products and Services: Analysing Pricing and Bundling Strategies". Journal of Forecasting 17

Moore, Chris (2010), "Analysing Pick n' Mix Menus via Choice Analysis to Optimize the Client Portfolio", Sawtooth Software conference

Borghi, Carlo et al. (2012), "Menu-Based Choice modeling (MBC): Comparison of different methodologies", Sawtooth Software conference

Neuerburg, Christian (2014), "Mixed-Bundling", Sawtooth Software TURBO conference
Neuerburg, Christian (2015), "Menu-Based Choice: Probit as an alternative to logit? ", Sawtooth Software conference
Dippold-Tausendpfund, Katrin \& Neuerburg, Christian (2018), "Variable select for MBC Cross-price effects", Sawtooth Software conference

Hill, Aaron \& Moore, Chris (2020), "What's on your Menu?", Quirks, London
Moore, Chris (2020), "A Practitioners guide to MBC", SKIM conference

Questions?

[^0]: \square Given the choices above, I would leave this restaurant without eating

